22/10(a)

The University of Sydney

CHEM1902 - CHEMISTRY 1B (ADVANCED)

<u>and</u>

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 12, 16 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
Page	Max	Gained
2-10	50	

Short answer section

		Marks	
Page	Max	Gained	Marker
11	8		
13	6		
14	6		
15	11		
17	5		
18	8		
19	6		
Total	50		

CHEM1902/1904

• Consider the compound with formula Na ₃ [FeCl(CN) ₅]·H ₂ O.	Marks 3
Name the compound.	
Write the formula of the complex ion.	
Write the atomic symbols of the ligand donor atoms.	
• Write balanced equations for each of the following reactions. If there is no reaction then write "no reaction".	5
Excess nitric acid (2 M) is added to a solution of Na ₂ [Zn(OH) ₄].	
Excess water is added to solid potassium oxide.	-
Excess hydrochloric acid (4 M) is added to solid silver(I) sulfide.	-
50 mL of magnesium nitrate solution (1 M) is added to 1 L of ammonia solution (2 M).	_
Chlorine gas is bubbled through a solution of sodium iodide.	-

Marks • Lead(II) chromate was used as a paint pigment for many years. Both lead and 6 chromate cause irreversible damage to human health and are of serious environmental concern. Calculate the concentration of Pb^{2+} (in mol L⁻¹) in a solution that is in equilibrium with excess $PbCrO_4(s)$. The solubility product constant, K_{so} , of PbCrO₄ is 2.3×10^{-13} M². ANSWER: Lead(II) chloride is substantially more soluble than lead(II) chromate. What is the molar solubility of lead(II) chromate in a saturated solution of lead(II) chloride? The K_{so} of PbCl₂ is 1.7×10^{-5} M³. ANSWER:

3

A solution contains platinum ions in an unknown oxidation state. When a current of 2.0 A was applied for 2.0 hours, 7.3 g of platinum metal was deposited. What was the oxidation state of the platinum ions? Show all working.

ANSWER:

• Consider the electrolytic cell and electrode reduction potential shown below. Both half-cells consist of Pb electrodes immersed in 1.0 M Pb(NO₃)₂ solution.

A solution of Na₂S is added to the half-cell on the left. Which half-cell is the cathode? Describe and explain all changes to the cell. The K_{so} of PbS = 3×10^{-28} M².

Marks • Give the constitutional formulas of the major organic product(s) formed in the 11 following reactions. Give the names of the organic compounds where requested. OH 1. NaOH / H_2O 2. CH₃CH₂Br HOCH₂ \mathbf{O} 1. (CH₃)₂CHMgBr Η 2. H_3O^{\oplus} Name: excess NH₃ Cl COOH $CH_3CH_2OH / H^{\oplus} / heat$ Name: HBr Name: 1. $Na^{\oplus \ominus} NH_2$ 2. I´ Name:

Marks • With the aid of structure diagrams, show how you would effect the following 5 conversions. Clearly indicate the reagents you would use and any intermediate compounds. CH₂Br Br CN

Marks • Draw the constitutional structures of the compounds A, B, C, D, E and F produced in 8 the following reaction sequence. Use the following clues to help you. The molecular formula of each compound is given. Compound **B** is the major product of the second step. Compounds **B** and **C** are diastereoisomers. Compound **D** is a mixture of stereoisomers. Compound **E** has a ¹H nmr spectrum that consists of an absorption due to the phenyl ring and one other signal that appears as a singlet. Compound **F** is identical to compound **C**. NaBH₄ A $C_9H_{12}O$ conc. H₂SO₄ / heat $Br_2/0^{\circ}C$ + \mathbf{D} C₉H₁₀Br₂ **B** C₉H₁₀ **C** C_9H_{10} excess KOH / heat H₂ / deactivated catalyst $F \ C_9 H_{10}$ $E C_9H_8$ Which of the following is the best stereochemical description of compound A? achiral, a racemic mixture, a mixture of diastereoisomers, an (*R*)-enantiomer, an (*S*)-enantiomer How many different stereoisomers comprise compound **D**?

Marks • Phenylalanine is an amino acid essential for human development. Draw the 6 (S)-enantiomer. ΟH NH₂ phenylalanine What is the molecular formula of phenylalanine? Name the functional groups present in phenylalanine. Draw the structure of the product formed when phenylalanine is dissolved in water at the following pH values. pH = 10 pH = 4

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM) DATA SHEET

Physical constants	Conversion factors
Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$	1 atm = 760 mmHg = 101.3 kPa
Faraday constant, $F = 96485 \text{ C mol}^{-1}$	0 °C = 273 K
Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$	$1 L = 10^{-3} m^3$
Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$	$1 \text{ Å} = 10^{-10} \text{ m}$
Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
$= 0.08206 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L	

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}C = 22.4 L$

Useful formulas

Acids and Bases	Kinetics	Radioactivity
$pK_w = pH + pOH = 14$	$k = A e^{-Ea/RT}$	A = kN
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14$	$t_{\frac{1}{2}} = \ln 2/k$	$\ln(N_0/N_t) = kt$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$	$t = 8033 \ln(A_0/A_t)$

Electrochemistry	Colligative properties	Thermodynamics & Equilibrium
$\Delta G^{\circ} = -nFE^{\circ}$	$\pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$E = E^{\circ} - (RT/nF) \ln Q$	$\mathbf{p} = k\mathbf{c}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$E^{\circ} = (RT/nF) \ln K$	$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta G^{\circ} = -RT \ln K$
Moles of $e^- = It/F$	$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Quantum Chamister	Cog Lowa	

Quantum Cher	mistry
$E = hv = hc/\lambda$	

 $\lambda = h/mu$

Gas Laws PV = nRT

 $(P + n^2 a/V^2)(V - nb) = nRT$

Deci	mal fract	ions	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbo			
10^{-3}	milli	m	10^{3}	kilo	k			
10^{-6}	micro	μ	10^{6}	mega	Μ			
10^{-9}	nano	n	10 ⁹	giga	G			
10^{-12}	pico	р						

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
IIVD	1																	2
]	H																	Не
1.0	008																	4.003
	3	4											5	6	7	8	9	10
		BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
I	_1	Бе											D	12.01	IN 14.01	16.00	r	1Ne 20.18
0.:	1	9.012											10.81	12.01	14.01	10.00	19.00	19
1 sor	DIUM N	⊥∠ MAGNESIUM											1 J ALUMINIUM	14 SILICON	1 J PHOSPHORUS	I O SULFUR	1 / CHLORINE	1 O ARGON
N	la	Mg											Al	Si	Р	S	Cl	Ar
22	.99	24.31		1				1				1	26.98	28.09	30.97	32.07	35.45	39.95
1	9	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTA	ASSIUM		SCANDIUM	TITANIUM Ti	VANADIUM	CHROMIUM	MANGANESE		COBALT	NICKEL		ZINC 7n	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON Kr
39	10	Ca 40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	D 1 79.90	83.80
3	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUB	IDIUM S	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
R	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85	.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
5 CAE	5 SIUM	56 BARIUM	57-71	12 HAENIUM	73 TANTALIM	1/4 TUNGSTEN	75 RHENIUM	76 05MIUM	IRIDIUM	78 PLATINUM	79 GOLD	80 MERCURY	81 THALLIUM	82	83 BISMUTH	84 POLONIUM	85 ASTATINE	86 RADON
(Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132	2.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
8	37	88	89-103	104	105	106	107	108	109									
FRA	r	Ra		Rf	Db	Seaborgium	Bh	HASSIUM	MELINERIUM									
[22	3.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
-			I															
		57	' 5	8	59	60	61	62	63	64	65	5	66	67	68	69	70	71
LANTI	HANIDES	LANTHA	NUM CEF		RASEODYMIUM Dr	NEODYMIUM	PROMETHIUM Dm	SAMARIUM	EUROPIUM		M TERBI	UM DYS				THULIUM	YTTERBIUM Vh	LUTETIUM
		138.	91 140).12	1 40.91	144.24	1 111 [144.9]	150.4	151.96	157.25	5 158.	.93 16	2 .50	64.93	167.26	168.93	173.04	174.97
		80) 9	0	91	92	93	94	95	96	97	7	98	99	100	101	102	103
ACT	INIDES	ACTINI	им тно	RIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM CALI	FORNIUM E	INSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
		A		h	Pa	U	Np	Pu	Am	Cm		K	Cť	Es	Fm	Md	No	Lr
		[227]	.0] 232	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1] [247	.1] [2	52.1]	252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

November 2003

CHEM1902/1904

22/10(b)