CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)
 SECOND SEMESTER EXAMINATION CONFIDENTIAL

NOVEMBER 2003
TIME ALLOWED: THREE HOURS
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 12,16 \& 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

Page	Marks			Marker
	Max	Gained		
11	8			
13	6			
14	6			
15	11			
17	5			
18	8			
19	6			
Total	50			

- Consider the compound with formula $\mathrm{Na}_{3}\left[\mathrm{FeCl}(\mathrm{CN})_{5}\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

Name the compound.

Write the formula of the complex ion.

Write the atomic symbols of the ligand donor atoms.

- Write balanced equations for each of the following reactions. If there is no reaction then write "no reaction".

Excess nitric acid (2 M) is added to a solution of $\mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$.

Excess water is added to solid potassium oxide.

Excess hydrochloric acid (4 M) is added to solid silver(I) sulfide.

50 mL of magnesium nitrate solution $(1 \mathrm{M})$ is added to 1 L of ammonia solution (2 M).

Chlorine gas is bubbled through a solution of sodium iodide.

- Lead(II) chromate was used as a paint pigment for many years. Both lead and chromate cause irreversible damage to human health and are of serious environmental concern. Calculate the concentration of $\mathrm{Pb}^{2+}\left(\right.$ in $\mathrm{mol} \mathrm{L}^{-1}$) in a solution that is in equilibrium with excess $\mathrm{PbCrO}_{4}(\mathrm{~s})$.
The solubility product constant, $K_{\text {so }}$, of PbCrO_{4} is $2.3 \times 10^{-13} \mathrm{M}^{2}$.
\square
Lead(II) chloride is substantially more soluble than lead(II) chromate. What is the molar solubility of lead(II) chromate in a saturated solution of lead(II) chloride? The $K_{\text {so }}$ of PbCl_{2} is $1.7 \times 10^{-5} \mathrm{M}^{3}$.

ANSWER:

- A solution contains platinum ions in an unknown oxidation state. When a current of 2.0 A was applied for 2.0 hours, 7.3 g of platinum metal was deposited. What was the oxidation state of the platinum ions? Show all working.

ANSWER:

- Consider the electrolytic cell and electrode reduction potential shown below. Both half-cells consist of Pb electrodes immersed in $1.0 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution.

What is the initial voltage of the cell?

A solution of $\mathrm{Na}_{2} \mathrm{~S}$ is added to the half-cell on the left. Which half-cell is the cathode? Describe and explain all changes to the cell. The K_{so} of $\mathrm{PbS}=3 \times 10^{-28} \mathrm{M}^{2}$.

- Give the constitutional formulas of the major organic product(s) formed in the following reactions. Give the names of the organic compounds where requested.

Name:

Name:

\qquad

Name:

Name:

- With the aid of structure diagrams, show how you would effect the following conversions. Clearly indicate the reagents you would use and any intermediate compounds.

- Draw the constitutional structures of the compounds $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} produced in the following reaction sequence. Use the following clues to help you.
The molecular formula of each compound is given. Compound \mathbf{B} is the major product of the second step. Compounds \mathbf{B} and \mathbf{C} are diastereoisomers.
Compound \mathbf{D} is a mixture of stereoisomers. Compound \mathbf{E} has a ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum that consists of an absorption due to the phenyl ring and one other signal that appears as a singlet. Compound \mathbf{F} is identical to compound \mathbf{C}.

Which of the following is the best stereochemical description of compound \mathbf{A} ?
achiral, a racemic mixture, a mixture of diastereoisomers, an (R)-enantiomer, an (S)-enantiomer

How many different stereoisomers comprise compound \mathbf{D} ?

- Phenylalanine is an amino acid essential for human development. Draw the (S)-enantiomer.

phenylalanine

What is the molecular formula of phenylalanine?

Name the functional groups present in phenylalanine.

Draw the structure of the product formed when phenylalanine is dissolved in water at the following pH values.

$\mathrm{pH}=10$	$\mathrm{pH}=4$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902 - CHEMISTRY 1B (ADVANCED)

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM) DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$

Useful formulas

Acids and Bases

$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$

Electrochemistry

$\Delta G^{\circ}=-n F E^{\circ}$
$E=E^{\circ}-(R T / n F) \ln Q$
$E^{\circ}=(R T / n F) \ln K$
Moles of $e^{-}=I t / F$

Quantum Chemistry

$E=h \nu=h c / \lambda$
$\lambda=h / m u$

Kinetics

$k=A \mathrm{e}^{-E a / R T}$
$t_{1 / 2}=\ln 2 / k$
$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{o}-k t$
Colligative properties
$\pi=\mathrm{c} R T$
$\mathrm{p}=k \mathrm{c}$
$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$

Radioactivity

$A=k N$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=k t$
$t=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$

Thermodynamics \& Equilibrium

$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\Delta G^{\circ}=-R T \ln K$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta \mathrm{n}}$

Gas Laws

$P V=n R T$
$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

PERIODIC TABLE OF THE ELEMENTS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	$\begin{gathered} 1 \\ \hline \text { myogery } \\ \mathbf{H} \\ 1.008 \\ \hline \end{gathered}$																	$\begin{gathered} 2 \\ \hline \text { nurux } \\ \text { He } \\ 4.003 \\ \hline 10 \end{gathered}$
	$\begin{gathered} 3 \\ \hline \text { unuwn } \\ \text { Li } \\ 6.941 \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \hline \text { вunnuw } \\ \text { Be } \\ 9.012 \\ \hline \end{array}$											$\begin{array}{\|c} \hline 5 \\ \hline \text { nopen } \\ \mathbf{B} \\ 10.81 \\ \hline \end{array}$	$\begin{gathered} \hline 6 \\ \substack{\text { canaon } \\ \mathbf{C} \\ 12.01 \\ \hline \\ \hline} \end{gathered}$		$\begin{gathered} \hline 8 \\ \substack{\text { oxceav } \\ \mathbf{O} \\ 16.00} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 9 \\ \text { nucons } \\ \mathbf{F} \\ 19.00 \\ \hline \end{array}$	$\begin{array}{r} 10 \\ \hline \text { y, wev } \\ \mathbf{N e} \\ 20.18 \\ \hline \end{array}$
	$\begin{gathered} 11 \\ \text { somenn } \\ \text { sa } \\ 22.99 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 12 \\ \text { mesusum } \\ \mathbf{M g} \\ 24.31 \\ \hline \end{array}$											$\begin{array}{\|c\|c\|} \hline 13 \\ \text { sumunum } \\ \text { Al } \\ 26.98 \\ \hline \end{array}$	$\begin{gathered} \hline 14 \\ \text { sulcow } \\ \mathbf{S i} \\ 28.09 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ \substack{\text { pucsernoust } \\ \mathbf{P} \\ 30.97 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} \hline 16 \\ \text { sururin } \\ \mathbf{S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 17 \\ \text { chonens } \\ \text { CC } \\ 35.45 \\ \hline \end{array}$	$\begin{gathered} 18 \\ \text { м кecor } \\ \text { Ar } \\ 39.95 \\ \hline \end{gathered}$
	$\begin{gathered} 19 \\ \hline \text { ronsunu } \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \text { cuncun } \\ \text { Ca } \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \begin{array}{c} \text { senvoun } \\ \text { sce } \\ \text { Sc } \\ 44.96 \end{array} \end{gathered}$	$\begin{gathered} \hline 22 \\ \substack{\text { manum } \\ \mathbf{T i} \\ 47.88} \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { nuxuman } \\ \mathbf{V} \\ 50.94} \end{gathered}$	$\begin{gathered} 24 \\ \hline \begin{array}{c} \text { cuenum } \\ \text { Cr } \\ 52.00 \end{array} \end{gathered}$	$\begin{gathered} \hline \text { 25 } \\ \text { MnNense } \\ \text { Mnn } \\ 54.94 \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ \hline \begin{array}{c} \text { mex } \\ \text { Fe } \\ 55.85 \end{array} \end{gathered}$	$\begin{array}{\|c\|} \hline 27 \\ \text { comur } \\ \text { Co } \\ 58.93 \end{array}$	$\begin{gathered} \hline 28 \\ \hline \text { nexal } \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\begin{gathered} 29 \\ \text { copruir } \\ \text { Cu } \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \text { ance } \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \text { cunur } \\ \text { Ga } \\ 69.72 \end{gathered}$		$\begin{gathered} 33 \\ \hline \text { Asesenc } \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \text { surwn } \\ \text { se } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \hline \text { nenume } \\ \text { Br } \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \text { kevroon } \\ \mathbf{K r} \\ 83.80 \end{gathered}$
	$\begin{gathered} \hline 37 \\ \hline \text { numun } \\ \text { Rub } \\ 85.47 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} 38 \\ \text { suroxrmu } \\ \mathbf{S r} \\ 87.62 \end{array} \\ \hline \end{array}$			$\begin{aligned} & \hline 41 \\ & \text { Mosum } \\ & \text { Nb } \\ & 92.91 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 42 \\ \text { Monvenurux } \\ \mathbf{M o .} \\ 95.94 \\ \hline \end{gathered}$		$\begin{array}{\|c} \hline 44 \\ \begin{array}{c} \text { numenuw } \\ \mathbf{R u} \\ 101.07 \end{array} \end{array}$	$\begin{array}{\|c} \hline 45 \\ \hline \text { nunown } \\ \text { Rh } \\ 102.91 \\ \hline \end{array}$	$\begin{gathered} \hline 46 \\ \begin{array}{c} \text { runurun } \\ \text { Pd } \\ 106.4 \end{array} \end{gathered}$	$\begin{gathered} \hline 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \begin{array}{c} \text { cumunn } \\ \text { Cd } \\ 1122.40 \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 49 \\ \text { noven } \\ \text { In } \\ 144.82 \end{array}$	$\begin{gathered} 50 \\ \text { Tw } \\ \text { Sn } \\ 118.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { Numonv } \\ \text { Sb } \\ \text { 121.75 } \end{gathered}$	52 mиинин Te 127.60	$\begin{array}{\|c} \hline 53 \\ \text { nonne } \\ \text { I } \\ 126.90 \end{array}$	$\begin{array}{r} 54 \\ \text { 5xnow } \\ \text { Xe } \\ \text { Xe } \\ \hline \end{array}$
	55 cussun Cs 132.91		57-71	$\begin{gathered} 72 \\ \substack{\text { munurus } \\ \text { Hf } \\ 178.49 \\ \hline} \\ \hline \end{gathered}$	$\begin{gathered} \hline 73 \\ \text { rurnum } \\ \text { Ta } \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ \substack{\text { nesurnav } \\ \mathbf{W} \\ 183.85 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Runwn } \\ \text { Re } \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} 76 \\ \begin{array}{c} \text { osverum } \\ \text { Os } \\ 190.2 \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 77 \\ \text { nempun } \\ \text { nr } \\ 192.22 \\ \hline \end{array}$	$\begin{gathered} \hline 78 \\ \substack{\text { numpun } \\ \mathbf{P t} \\ 195.09 \\ \hline \\ \hline} \\ \hline \end{gathered}$	$\begin{gathered} 79 \\ \text { coun } \\ \text { Au } \\ 196.97 \\ \hline \end{gathered}$	80 wnacury $\mathbf{H g}$ 200.59	$\begin{array}{\|c\|c} \hline 81 \\ \text { munuru } \\ \text { Tl } \\ 204.37 \\ \hline \end{array}$	$\begin{gathered} \hline 82 \\ \text { 82u } \\ \text { Pb } \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \text { wsunur } \\ \mathbf{B i} \\ 208.98 \\ \hline \end{gathered}$	$\begin{gathered} 84 \\ \substack{8010 x u n \\ \text { Po } \\ \text { P210.0] }} \end{gathered}$	$\begin{gathered} 85 \\ \text { sunume } \\ \mathbf{A t} \\ {[210.0]} \end{gathered}$	$\begin{gathered} 86 \\ \text { Renow } \\ \mathbf{R n} \\ {[222.0]} \end{gathered}$
	$\begin{gathered} 87 \\ \text { rencurn } \\ \text { Fr } \\ {[223.0]} \\ \hline \end{gathered}$	$\begin{gathered} 88 \\ \text { Renoun } \\ \mathbf{R a} \\ {[226.0]} \end{gathered}$	89-103	104 九木unerenomu $\mathbf{R f}$ $[261]$	$\begin{gathered} 105 \\ \text { punsum } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} 106 \\ \text { sextocercum } \\ \text { Sg } \\ {[266]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { nonkum } \\ \text { Bh } \\ {[262]} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 108 \\ \text { masstum } \\ \mathbf{H S} \\ {[265]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 109 \\ \text { мепминим } \\ \mathbf{M t} \\ {[266]} \\ \hline \end{array}$									

